Transportation cost inequalities on path spaces over Riemannian manifolds
نویسندگان
چکیده
منابع مشابه
Transportation-Cost Inequalities on Path Space over Manifolds with Boundary
Let L = ∆ + Z for a C vector field Z on a complete Riemannian manifold possibly with a boundary. A number of transportation-cost inequalities on the path space for the (reflecting) L-diffusion process are proved to be equivalent to the curvature condition Ric−∇Z ≥ −K and the convexity of the boundary (if exists). These inequalities are new even for manifolds without boundary, and are partly ext...
متن کامل0 A ug 2 00 9 Transportation - Cost Inequalities on Path Space Over Manifolds with Boundary ∗
Let L = ∆+Z for a C1 vector field Z on a complete Riemannian manifold possibly with a boundary. By using the uniform distance, a number of transportation-cost inequalities on the path space for the (reflecting) L-diffusion process are proved to be equivalent to the curvature condition Ric−∇Z ≥ −K and the convexity of the boundary (if exists). These inequalities are new even for manifolds withou...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملMass Transportation on Sub-Riemannian Manifolds
We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann’s Theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal m...
متن کاملQuasilinear elliptic inequalities on complete Riemannian manifolds
We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate, elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results for some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2002
ISSN: 0019-2082
DOI: 10.1215/ijm/1258138474